active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
U211(active(X1), X2, X3) → U211(X1, X2, X3)
MARK(tt) → ACTIVE(tt)
MARK(U11(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
AND(X1, mark(X2)) → AND(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
ACTIVE(plus(N, s(M))) → ISNAT(M)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNat(plus(V1, V2))) → ISNAT(V2)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(U11(tt, N)) → MARK(N)
ACTIVE(plus(N, 0)) → U111(isNat(N), N)
U111(X1, active(X2)) → U111(X1, X2)
S(active(X)) → S(X)
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
AND(X1, active(X2)) → AND(X1, X2)
ACTIVE(plus(N, 0)) → MARK(U11(isNat(N), N))
U211(X1, active(X2), X3) → U211(X1, X2, X3)
ACTIVE(isNat(plus(V1, V2))) → AND(isNat(V1), isNat(V2))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNat(N))
MARK(U21(X1, X2, X3)) → MARK(X1)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)
AND(active(X1), X2) → AND(X1, X2)
ACTIVE(and(tt, X)) → MARK(X)
U111(mark(X1), X2) → U111(X1, X2)
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
PLUS(active(X1), X2) → PLUS(X1, X2)
ACTIVE(plus(N, 0)) → ISNAT(N)
PLUS(mark(X1), X2) → PLUS(X1, X2)
MARK(U21(X1, X2, X3)) → U211(mark(X1), X2, X3)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → U111(mark(X1), X2)
ACTIVE(U21(tt, M, N)) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNat(0)) → MARK(tt)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
ACTIVE(plus(N, s(M))) → U211(and(isNat(M), isNat(N)), M, N)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
U111(active(X1), X2) → U111(X1, X2)
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(plus(X1, X2)) → MARK(X1)
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
ACTIVE(isNat(plus(V1, V2))) → ISNAT(V1)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(X1, mark(X2), X3) → U211(X1, X2, X3)
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(U21(tt, M, N)) → PLUS(N, M)
MARK(0) → ACTIVE(0)
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
U211(active(X1), X2, X3) → U211(X1, X2, X3)
MARK(tt) → ACTIVE(tt)
MARK(U11(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
AND(X1, mark(X2)) → AND(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
ACTIVE(plus(N, s(M))) → ISNAT(M)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNat(plus(V1, V2))) → ISNAT(V2)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(U11(tt, N)) → MARK(N)
ACTIVE(plus(N, 0)) → U111(isNat(N), N)
U111(X1, active(X2)) → U111(X1, X2)
S(active(X)) → S(X)
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
AND(X1, active(X2)) → AND(X1, X2)
ACTIVE(plus(N, 0)) → MARK(U11(isNat(N), N))
U211(X1, active(X2), X3) → U211(X1, X2, X3)
ACTIVE(isNat(plus(V1, V2))) → AND(isNat(V1), isNat(V2))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNat(N))
MARK(U21(X1, X2, X3)) → MARK(X1)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)
AND(active(X1), X2) → AND(X1, X2)
ACTIVE(and(tt, X)) → MARK(X)
U111(mark(X1), X2) → U111(X1, X2)
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
PLUS(active(X1), X2) → PLUS(X1, X2)
ACTIVE(plus(N, 0)) → ISNAT(N)
PLUS(mark(X1), X2) → PLUS(X1, X2)
MARK(U21(X1, X2, X3)) → U211(mark(X1), X2, X3)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → U111(mark(X1), X2)
ACTIVE(U21(tt, M, N)) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNat(0)) → MARK(tt)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
ACTIVE(plus(N, s(M))) → U211(and(isNat(M), isNat(N)), M, N)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
U111(active(X1), X2) → U111(X1, X2)
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(plus(X1, X2)) → MARK(X1)
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
ACTIVE(isNat(plus(V1, V2))) → ISNAT(V1)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(X1, mark(X2), X3) → U211(X1, X2, X3)
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(U21(tt, M, N)) → PLUS(N, M)
MARK(0) → ACTIVE(0)
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
S(mark(X)) → S(X)
S(active(X)) → S(X)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
S(active(X)) → S(X)
S(mark(X)) → S(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
U211(active(X1), X2, X3) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(X1, active(X2), X3) → U211(X1, X2, X3)
U211(X1, mark(X2), X3) → U211(X1, X2, X3)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
U211(active(X1), X2, X3) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(X1, mark(X2), X3) → U211(X1, X2, X3)
U211(X1, active(X2), X3) → U211(X1, X2, X3)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
U111(X1, mark(X2)) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, 0)) → MARK(U11(isNat(N), N))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(U11(tt, N)) → MARK(N)
ACTIVE(and(tt, X)) → MARK(X)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(plus(N, 0)) → MARK(U11(isNat(N), N))
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(U11(tt, N)) → MARK(N)
ACTIVE(and(tt, X)) → MARK(X)
POL(0) = 1
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x1 + x2
POL(U21(x1, x2, x3)) = x1 + x2 + x3
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(and(tt, X)) → mark(X)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, N)) → mark(N)
mark(isNat(X)) → active(isNat(X))
active(isNat(0)) → mark(tt)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(U11(tt, N)) → MARK(N)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → ACTIVE(s(mark(X)))
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(U11(tt, N)) → MARK(N)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 1
POL(U21(x1, x2, x3)) = 1
POL(active(x1)) = 0
POL(and(x1, x2)) = 1
POL(isNat(x1)) = 1
POL(mark(x1)) = 0
POL(plus(x1, x2)) = 1
POL(s(x1)) = 0
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(U11(tt, N)) → MARK(N)
ACTIVE(and(tt, X)) → MARK(X)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → MARK(X1)
ACTIVE(U11(tt, N)) → MARK(N)
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
POL(0) = 1
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 1 + x1 + x2
POL(U21(x1, x2, x3)) = x1 + x2 + x3
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(and(tt, X)) → mark(X)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, N)) → mark(N)
mark(isNat(X)) → active(isNat(X))
active(isNat(0)) → mark(tt)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → MARK(X)
MARK(U21(X1, X2, X3)) → MARK(X1)
Used ordering: Polynomial interpretation [25]:
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
POL(0) = 1
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(and(tt, X)) → mark(X)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, N)) → mark(N)
mark(isNat(X)) → active(isNat(X))
active(isNat(0)) → mark(tt)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 0
POL(U21(x1, x2, x3)) = 1
POL(active(x1)) = 0
POL(and(x1, x2)) = 1
POL(isNat(x1)) = 1
POL(mark(x1)) = 0
POL(plus(x1, x2)) = 1
POL(s(x1)) = 0
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(and(tt, X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(and(tt, X)) → MARK(X)
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
POL(0) = 1
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 1 + x2
POL(U21(x1, x2, x3)) = x2 + x3
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(mark(x1)) = x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = x1
POL(tt) = 1
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(and(tt, X)) → mark(X)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, N)) → mark(N)
mark(isNat(X)) → active(isNat(X))
active(isNat(0)) → mark(tt)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(U21(tt, M, N)) → MARK(s(plus(N, M)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
Used ordering: Polynomial interpretation [25]:
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1, x2, x3)) = 1
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = 0
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(and(tt, X)) → mark(X)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
mark(s(X)) → active(s(mark(X)))
active(isNat(s(V1))) → mark(isNat(V1))
active(U11(tt, N)) → mark(N)
mark(isNat(X)) → active(isNat(X))
active(isNat(0)) → mark(tt)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(U11(x1, x2)) = 0
POL(U21(x1, x2, x3)) = 0
POL(active(x1)) = 0
POL(and(x1, x2)) = 0
POL(isNat(x1)) = 1
POL(mark(x1)) = 0
POL(plus(x1, x2)) = 1
POL(s(x1)) = 0
POL(tt) = 0
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U21(x1, x2, x3)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(mark(x1)) = x1
POL(plus(x1, x2)) = 1
POL(s(x1)) = 0
POL(tt) = 0
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesReductionPairsProof
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(0) → active(0)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
The following rules are removed from R:
ACTIVE(isNat(plus(V1, V2))) → MARK(and(isNat(V1), isNat(V2)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(plus(N, s(M))) → MARK(U21(and(isNat(M), isNat(N)), M, N))
Used ordering: POLO with Polynomial interpretation [25]:
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
POL(ACTIVE(x1)) = 2·x1
POL(MARK(x1)) = 2·x1
POL(U21(x1, x2, x3)) = 2 + x1 + x2 + x3
POL(active(x1)) = 2·x1
POL(and(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = x1
POL(mark(x1)) = x1
POL(plus(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(and(X1, X2)) → MARK(X1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPSizeChangeProof
MARK(and(X1, X2)) → MARK(X1)
From the DPs we obtained the following set of size-change graphs: